

# MATTHEW GARCIA

## Computer Engineer | Embedded Systems | Robotics | Digital Design

📞 832-420-4378 📩 garciamatthew176@gmail.com 🌐 <https://www.linkedin.com/in/matthew-garcia-165634195/>  
🌐 <https://matthew-garcia-portfolio.vercel.app/> 📍 Baytown, TX ⭐ <https://github.com/Matthew-Garcia>

## SUMMARY

Senior Computer Engineering student specializing in embedded systems and robotics, with a strong background in firmware development and electromechanical diagnostics. Combines proficiency in C/C++, Python, and VHDL with hands-on experience in hardware-software integration, real-time control, and system-level debugging. Demonstrated ability to design, validate, and integrate embedded control solutions in safety-critical and research-driven environments.

## EXPERIENCE

### Robotics & Embedded Systems Engineer (Capstone) — NASA Lunabotics

#### University of Houston-Clear Lake

📅 2025 - Present 📍 Houston, TX

- Designed and implemented the embedded control system for a lunar excavation rover, aligned with NASA systems engineering constraints for autonomy and power management.
- Developed and tested C/C++ firmware and Python control scripts for real-time control of motors, sensors, and electromechanical subsystems on ESP32 microcontrollers.
- Developed and implemented robust fail-safe control mechanisms to support rover redundancy and operational continuity in degraded operating conditions.
- Engineered reliable embedded communication interfaces between NVIDIA Jetson (AI/Vision) and ESP32 (motion control) systems for real-time command and data exchange.
- Designed and implemented 24V-to-12V power distribution schematics, engineering a parallel battery bank with DC-DC buck conversion to deliver stable, filtered power to an NVIDIA Jetson AI computer and ESP32 microcontrollers.
- Led and supported system integration testing, validating hardware-software interfaces and producing technical documentation supporting competition compliance.

### Embedded Systems & Automotive Electronics Diagnostics Specialist

#### Pasadena Auto Service

📅 2021 - Present 📍 Pasadena, TX

- Isolated hardware-software interface failures within ECU-based control modules (ECM, BCM, TCM) by tracing signal paths through complex harness architectures and interpreting detailed electrical schematics.
- Analyzed CAN bus communication using oscilloscopes and diagnostic tools to identify signal integrity degradation, data corruption, and module timing faults in distributed control networks.
- Performed ECU firmware reflashing and module programming, validating cross-module compatibility and ensuring system stability following software updates.
- Verified the accuracy of analog and digital sensor outputs (Hall-effect, piezoelectric, O2) by comparing voltage waveforms against physical engine performance to identify hidden control errors.
- Validated ECU decision-making protocols by injecting simulated sensor data, ensuring precise system response and stability under anomalous operating conditions.

### Engineering Extern — Hardware, Firmware & Simulation

#### FlightSafety International

📅 01/2021 - 05/2021 📍 Houston, TX

- Selected for a technical externship program focused on safety-critical embedded systems and avionics within the flight simulation industry.
- Analyzed high-fidelity simulation architectures, evaluating how microcontroller firmware interfaces with hardware I/O and sensor feedback loops.
- Supported reviews of industrial validation workflows and diagnostic processes, correlating academic control theory with real-world aerospace engineering standards.

### IT Systems & Hardware Support Technician

#### Lee College

📅 2019 - 2021 📍 Baytown, TX

- Managed lifecycle operations for 500+ IT assets, utilizing enterprise inventory systems to track hardware allocation and maintenance schedules across campus facilities.
- Executed large-scale workstation deployments for academic labs, applying enterprise imaging standards to ensure consistent OS and software configurations.
- Diagnosed and resolved hardware and network connectivity faults, minimizing downtime for critical academic and administrative infrastructure.

## CERTIFICATIONS

### Automation and Autonomy of Mobile Robots using ROS

UH Energy | University of Houston-Clear Lake | Awarded April 2025

## SKILLS

### Hardware & Digital Systems

Verilog, VHDL, Vivado, ModelSim, Quartus, FPGA Development, Digital Logic Design, RTL Design, Timing Analysis, Hardware Testing & Validation, Electronics, Telecommunications

### Embedded Systems & Programming

C/C++, C#, Python, ARM Assembly, Arduino, STM32, Embedded Linux, Intel FPGA Boards, Oscilloscopes, Logic Analyzers, Multimeters, UART/SPI/I2C Protocols, Circuit Design, FreeRTOS, JTAG/SWD

### Robotics & Automation

ROS2, Gazebo, Rviz2, URDF/Xacro, Autonomous Navigation, Mapping, SLAM, Sensor Integration (LIDAR, IMUs, GPS), Robot Simulation

### Software & Tools

Linux, Git, MATLAB, LabVIEW, Windows, React, Next.js, JavaScript, HTML, CSS, Docker, Vercel, Shell Scripting, VMs, Data Structures, 3D Printing, CAD (Inventor, Fusion, SolidWorks), Bash

## EDUCATION

### Bachelor of Science in Computer Engineering

#### University of Houston-Clear Lake

📅 2022 - 05/2026 📍 Houston, TX

GPA

3.3 / 4.0

### Associate of Science in Pre-Engineering

#### Lee College

📅 2019 - 2022 📍 Baytown, TX

## PROJECTS

### 4-DOF SCARA Manipulator with ROS2 Control

📅 2024 - 2025

- Architected a ROS2 control stack for a 4-DOF robotic arm, replacing legacy firmware with MoveIt for motion planning.
- Implemented inverse kinematics solvers and visualized real-time joint trajectories in RViz before executing on hardware.

### LPC4088 Microcontroller System Design

📅 08/2025 - 12/2025

- Designed bare-metal embedded firmware on the NXP LPC4088 (ARM Cortex-M4), configuring GPIO, timers, and UART at the register level.
- Integrated and validated hardware-firmware behavior using JTAG/SWD debugging, interrupts, and memory-mapped I/O for deterministic real-time operation.

### Smart IoT Pet Feeder

📅 01/2023 - 05/2023

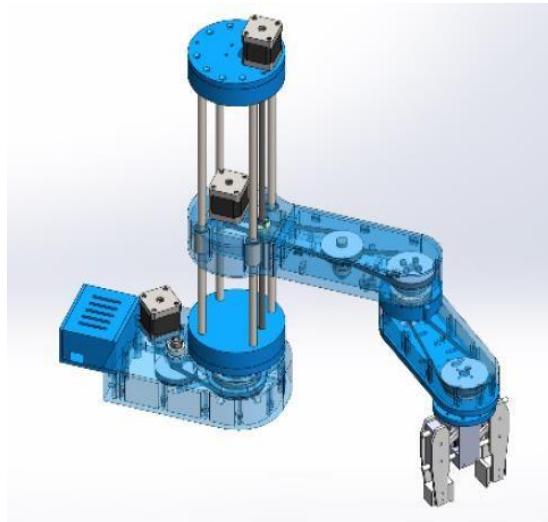
- Engineered a Wi-Fi-enabled feeding system using ESP32, integrating load cells and MQTT/HTTP protocols for remote mobile control.

# MATTHEW GARCIA

COMPUTER ENGINEERING AT THE UNIVERSITY OF  
HOUSTON-CLEAR LAKE



garciamatthew176@gmail.com




832-420-4378



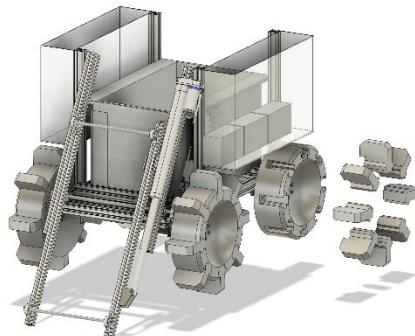
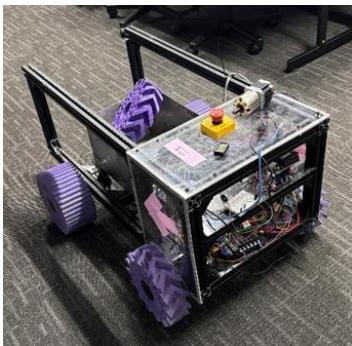
<https://www.linkedin.com/in/matthew-garcia-165634195/>

## SCARA ROBOT - Research Project



### What?

- Independently designed and built a functional SCARA robot for high-precision pick-and-place automation.
- Demonstrates key competencies in **embedded control and robot kinematics**.



### How?

- Simulated motion and kinematics using **ROS2** and **Gazebo**. Designed using **Solidworks**.
- Developed **Python control** software with PID and **inverse kinematics**.
- Implemented **rotary encoder** feedback for closed-loop control.

### Results

- Achieved accurate real-time **motion control**.
- Validated pick-and-place sequences in **simulation** and **hardware**.
- Established foundation for **robotics research**.

## NASA Lunabotics Rover - UHCL



### What?

- Designing a **NASA Lunabotics Rover**
- Focus on **excavation, transport, and autonomy**.
- Lead **Electrical & Software integration** (motor control, power, ROS2).

### How?

- Redesigned **electrical system** (PWM, dual-battery, safety).
- Built **ROS2** stack for Jetson-ESP32 **autonomy**.

### Results

- Completed new **CAD rover design in fusion 360** and drafted electrical/software architecture.
- Ongoing **ROS2 integration** toward autonomous excavation and transport.

# MATTHEW GARCIA

COMPUTER ENGINEERING AT THE UNIVERSITY OF  
HOUSTON-CLEAR LAKE



garciamatthew176@gmail.com



832-420-4378



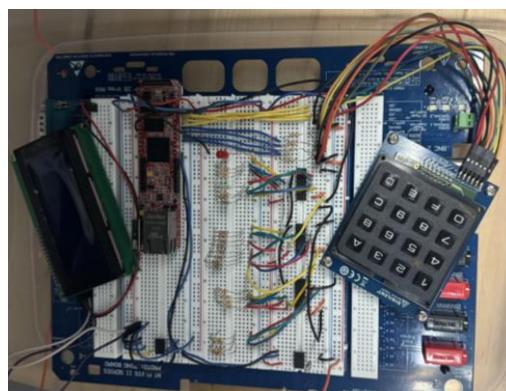
<https://www.linkedin.com/in/matthew-garcia-165634195/>

## SMART BOWL SYSTEM – UHCL



### What?

- Developed a **Bluetooth-controlled Smart Bowl** for automated pet feeding.
- Completed as an **Engineering Design & Project Management** project with team collaboration.


### How?

- Built **3D-printed housing** and mechanical parts in **SolidWorks**.
- Programmed **Arduino microcontroller** for motor/sensor control.
- Developed **mobile apps** (Android/iOS) to schedule feedings via BLE.

### Results

- Supported up to **10 daily feedings** with customizable portions.
- Achieved **1.95% error margin**, below the 2.5% target.
- Delivered proof-of-concept with plans for **Wi-Fi control and scaling**.

## LPC4088 Microcontroller – Embedded Systems Research Project



### What?

- Designed a bare-metal LPC4088 embedded system for real-time control and user interaction.
- Investigated deterministic **embedded behavior** through direct hardware and firmware integration.

### How?

- Programmed bare-metal LPC4088 firmware in **ARM assembly** and C++.
- Integrated multiple **I2C peripherals** (RTC, temperature sensor, LCD expander).
- Implemented a keypad-driven user interface with real-time **event handling**.

### Results

- Demonstrated **deterministic real-time behavior** with stable multi-peripheral I2C communication.
- Delivered a **fully functional embedded system** supporting clock, alarm, temperature monitoring, and user interaction.